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Abstract

A call center is a service network in which agents provide telephone-based services. Customers that

seek these services are delayed in tele-queues.

This paper summarizes an analysis of a unique record of call center operations. The data comprise

a complete operational history of a small banking call center, call by call, over a full year. Tak-

ing the perspective of queueing theory, we decompose the service process into three fundamental

components: arrivals, customer patience, and service durations. Each component involves different

basic mathematical structures and requires a different style of statistical analysis. Some of the key

empirical results are sketched, along with descriptions of the varied techniques required.

Several statistical techniques are developed for analysis of the basic components. One of these is

a test that a point process is a Poisson process. Another involves estimation of the mean function

in a nonparametric regression with lognormal errors. A new graphical technique is introduced for

nonparametric hazard rate estimation with censored data. Models are developed and implemented

for forecasting of Poisson arrival rates.

We then survey how the characteristics deduced from the statistical analyses form the building

blocks for theoretically interesting and practically useful mathematical models for call center oper-

ations.

Key Words: call centers, queueing theory, multiserver queues, Erlang-C, Erlang-A, queueing sci-

ence, arrivals, abandonment, service times, lognormal distribution, inhomogeneous Poisson process,

censored data, human patience, prediction of Poisson rates, Khintchine-Pollaczek formula.



1 INTRODUCTION

Telephone call centers are technology-intensive operations. Nevertheless often 70% or more of their

operating costs are devoted to human resources. Well-run call centers adhere to a sharply-defined

balance between agent efficiency and service quality, and to do so they use queueing-theoretic

models. Inputs to these mathematical models are statistics concerning system primitives, such as

the number of agents working, the rate at which calls arrive, the time required for a customer

to be served, and the length of time customers are willing to wait on hold before they hang up

the phone and abandon the queue. Outputs are performance measures, such as the distribution of

time that customers wait “on hold” and the fraction of customers that abandon the queue before

being served. In practice, the number of agents working becomes a control parameter which can

be increased or decreased to attain the desired efficiency-quality tradeoff.

Estimates of these primitives are needed to calibrate queueing models, and in many cases the models

make distributional assumptions concerning the primitives. In theory, the data required to validate

and properly tune these models should be readily available, since computers track and control the

minutest details of every call’s progress through the system. It is thus surprising that operational

data, collected at an appropriate level of detail, has been scarcely available. The data that are

typically collected and used in the call-center industry are simple averages that are calculated for

the calls that arrive within fixed intervals of time, often 30 minutes. There is a lack of documented,

comprehensive, empirical research on call-center performance that employs more detailed data.

The immediate goal of our study is to fill this gap. In this paper, we summarize a comprehensive

analysis of operational data from a bank call center. The data span all twelve months of 1999 and

are collected at the level of individual calls. Our data source consists of over 1,200,000 calls that

arrived to the center over the year. Of these, about 750,000 calls terminated in an interactive voice

response unit (IVR or VRU), a type of answering machine that allows customers serve themselves.

The remaining 450,000 callers asked to be served by an agent, and we have a record of the event-

history of each of these calls.

This paper is an important part of a larger effort to use both theoretical and empirical tools to

better characterize call center operations and performance. It is an abridged version of Brown

et al. (2002b), which provides a more complete treatment of the results reported here. Mandel-

baum, Sakov and Zeltyn (2000) presents a comprehensive description of our call-by-call database.
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Gans, Koole and Mandelbaum (2003) reviews queueing and related models of call centers, and

Mandelbaum (2001) contains an extensive bibliography.

1.1 QUEUEING MODELS OF CALL CENTERS

The queueing model that is simplest and most widely used in call centers is the so-called M/M/N

system, sometimes referred to as Erlang-C (Erlang, 1911; Erlang, 1917).

The M/M/N model is quite restrictive. It assumes, among other things, a steady-state environment

in which arrivals conform to a Poisson process, service durations are exponentially distributed, and

customers and servers are statistically identical and act independently of each other. It does not

acknowledge, among other things, customer impatience and abandonment behavior, time-dependent

parameters, customers’ heterogeneity, or servers’ skill levels. An essential task of contemporary

queueing theorists is to develop models that account for these effects.

Queueing science seeks to determine which of these effects is most important for modelling real-

life situations. For example, Garnett, Mandelbaum and Reiman (2002) develops both exact and

approximate expressions for M/M/N+M (also called Erlang-A) systems, which explicitly model

customer patience (time to abandonment) as being exponentially distributed. Empirical analysis

can help us to judge how well the Erlang-C and Erlang-A models predict customer delays – whether

or not their underlying assumptions are met.

1.2 Structure of the paper

The paper is structured as follows. In Section 2, we describe the call center under study and its

database.

Each of Sections 3 to 5 is dedicated to the statistical analysis of one of the stochastic primitives of

the queueing system: Section 3 addresses call arrivals; Section 4, service durations; and Section 5,

tele-queueing and customer patience. Section 5 also analyzes customer waiting times, a performance

measure that is deeply intertwined with the abandonment primitive.

A synthesis of the primitive building blocks is typically needed for operational understanding. To

this end, Section 6 discusses prediction of the arriving “workload”, which is essential in practice

for setting suitable service staffing levels.
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Once each of the primitives has been analyzed, one can also attempt to use existing queueing

theory, or modifications thereof, to describe certain features of the holistic behavior of the system.

In Section 7 we conclude with analyses of this type. We validate some classical theoretical results

from queueing theory and refute others.

Finally, we note that many statistical tests are considered throughout the paper, which raises the

problem of multiplicity (Benjamini and Hochberg, 1995). When data from call centers are analyzed

in support of operational decisions, the multiplicity problem needs to be addressed.

2 THE CALL CENTER OF BANK ANONYMOUS

The source of our data (Call Center Data, 2002) is a small call center of one of Israel’s banks.

The center provides several types of basic services, as well as others that include stock trading and

technical support for users of the bank’s internet site. On weekdays (Sunday through Thursday in

Israel) the center is open from 7am to midnight. During working hours, at most 13 regular agents,

5 Internet agents, and one shift supervisor may be working.

A simplified description of the path that each call follows through the center is as follows. A cus-

tomer calls one of several telephone numbers associated with the call center, the number depending

on the type of service sought. Except for rare busy signals, the customer is then connected to

a VRU and identifies herself. While using the VRU, the customer receives recorded information,

general and customized (e.g. an account balance). It is also possible for the customer to perform

some self-service transactions here, and 65% of the bank’s customers actually complete their service

via the VRU. The other 35% indicate the need to speak with an agent. If there is an agent free

who is capable of performing the desired service, the customer and the agent are matched to start

service immediately. Otherwise the customer joins the tele-queue.

Customers in the tele-queue are nominally served on a first-come first-served (FCFS) basis, and

customers’ positions in queue are distinguished by the times at which they arrive. In practice, the

call center operates a system with two priorities - high and low - and moves high-priority customers

up in queue by subtracting 1.5 minutes from their actual arrival times. Mandelbaum et al. (2000)

compares the behavior of the two priority groups of customers.

While waiting, each customer periodically receives information on her progress in the queue. More
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specifically, she is told the amount of time that the first person in queue has been waiting, as well

as her approximate location in the queue. The announcement is replayed every 60 seconds or so,

with music, news, or commercials intertwined.

In each of the 12 months of 1999, roughly 100,000-120,000 calls arrived to the system, 65,000-85,000

terminating in the VRU. The remaining 30,000-40,000 calls per month involved callers who exited

the VRU indicating a desire to speak to an agent. These calls are the focus of our study. About

80% of those requesting service were, in fact served, and about 20% abandoned before being served.

Each call that proceeds past the VRU can be thought of as passing through up to three stages,

each of which generates distinct data. The first is the arrival stage, which is triggered by the call’s

exit from the VRU and generates a record of an arrival time. If no appropriate server is available,

then the call enters the queueing stage. Three pieces of data are recorded for each call that queues:

the time it entered the queue; the time it exited the queue; and the manner in which it exited the

queue, by being served or abandoning. The last stage is service, and data that are recorded are

the starting and ending times of the service. Note that calls that are served immediately skip the

queueing stage, and calls that abandon never enter the service stage.

In addition to these time stamps, each call record in our database includes a categorical description

of the type of service requested. The main call types are Regular (PS in the database), Stock

Transaction (NE), New / Potential Customer (NW), and Internet Assistance (IN). Mandelbaum

et al. (2000) describes the process of collecting and cleaning the data and contains a variety of

additional descriptive analysis of it.

Over the year there were two operational changes that are important to note. First, from January

through July, all calls were served by the same group of agents, but beginning in August, internet

(IN) customers were served by a separate pool of agents. Thus, from August through December the

center can be considered to be two separate service systems, one for IN customers and another for

all other types. Second, as will be noted in Section 5, one aspect of the service-time data changed at

the end of October. In several instances this paper’s analyses are based on only the November and

December data. In other instances we have used data from August through December. Given the

changes noted above, this ensures consistency throughout the manuscript. November and December

were also convenient because they contained no Israeli holidays. In these analyses, we also restrict

the data to include only regular weekdays – Sunday through Thursday, 7am to midnight – since

these are the hours of full operation of the center. We have performed similar analyses for other
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Figure 1: Arrivals in Calls/Hr by Time-of-day, weekdays Nov. - Dec. (Left) PS Calls (Right) IN,

NW and NE Calls
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parts of the data, and in most respects the November–December results do not differ noticeably

from those based on data from other months of the year.

3 THE ARRIVAL PROCESS

Figure 1 shows, as a function of time of day, the average rate per hour at which calls come out of

the VRU. These are composite plots for weekday calls in November and December. The plots show

calls according to the major call types. The volume of Regular (PS) calls is much greater than that

of the other 3 types; hence those calls are shown on a separate plot. (These plots were fit by using

the root un-root method described in Brown, Zhang and Zhao (2001), along with the adaptive free

knot spline methodology of Mao and Zhao (2003).) For a more precise study of these arrival rates,

including confidence and prediction intervals. See Section 6 and also Brown et. al. (2001, 2002).

Note the bimodal pattern of Regular call-arrival times in Figure 1. It is especially interesting that

Internet service calls (IN) do not show a similar bimodal pattern and, in fact, have a peak in volume

after 10pm. (This peak can be partially explained by the fact that internet customers are sensitive

to telephone rates, which significantly decrease in Israel after 10pm, and that they also tend to be

people who stay late.)

3.1 Arrivals are inhomogeneous Poisson

Common call-center models and practice assume that the arrival process is Poisson with a rate that

remains constant for blocks of time (e.g. half-hours) with a separate queueing model fitted for each

block of time.
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A more natural model for capturing changes in the arrival rate is a time inhomogeneous Pois-

son process. Following common practice, we assume that the arrival rate function can be well

approximated as being piecewise constant.

We now construct a test of the null hypothesis that arrivals of given types of calls form an inho-

mogeneous Poisson process with piecewise constant rates. The first step in the construction of our

test involves breaking up the duration of a day into relatively short blocks of time, short enough so

that the arrival rate does not change significantly within a block. For convenience we used blocks

of equal time-length, L, though this equality assumption could be relaxed. One can then consider

the arrivals within a subset of blocks – for example, blocks at the same time on various days or

successive blocks on a given day. The former case would, for example, test whether the process is

homogeneous within blocks for calls arriving within the given time span.

Let Tij denote the j-th ordered arrival time in the i-th block, i = 1, . . . , I. Thus Ti1 ≤ . . . ≤ TiJ(i),

where J(i) denotes the total number of arrivals in the i-th block. Then define Ti0 = 0 and

Rij = (J(i) + 1 − j)

(

− log

(

L − Tij

L − Ti,j−1

))

, j = 1, ..., J(i).

Under the formal null hypothesis that the arrival rate is constant within each given time interval,

the {Rij} will be independent standard exponential variables as we now discuss.

Let Uij denote the j-th (unordered) arrival time in the i-th block. Then the assumed constant

Poisson arrival rate within this block implies that, conditionally on J(i), the unordered arrival times

are independent and uniformly distributed, i.e. Uij
i.i.d.∼ U(0, L). Note that Tij = Ui(j). It follows

that
L−Tij

L−Ti,j−1
are independent Beta(J(i)+1−j, 1) variables. (See, for example, Problem 6.14.33(iii)

in Lehmann 1986.) A standard change of variables then yields the conditional exponentiality of

the Rij given the value of J(i). (One may alternatively base the test on the variables R∗
ij =

j
(

− log
Tij

Ti,j+1

)

, where j = 1, . . . , J(i) and Ti,J(i)+1 = L. Under the null hypothesis these will also

be independent standard exponential variables.)

The null hypothesis does not involve an assumption that the arrival rates of different intervals are

equal or have any other pre-specified relationship. Any customary test for the exponential distri-

bution can be applied to test the null hypothesis. For convenience we use the familiar Kolmogorov-

Smirnov test, even though this may not have the greatest possible power against the alternatives of

most interest. In addition, exponential Q-Q plots can be very useful in ascertaining goodness-of-fit
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to the exponential distribution.

Brown et. al. (2002b) contains quantile plots for a few applications of this test. For the Regular

(PS) data we found it convenient to use L = 6 minutes. For the other types we use L = 60 minutes,

since these calls involved much lower arrival rates.

We omit the plots here to save space and because they show only minor deviations from the ideal

straight line pattern. One example involves arrival times of the Regular (PS) calls arriving between

11:12am and 11:18am on all weekdays in November and December. A second example involves

arrival of IN calls throughout Monday, November 23; from 7am to midnight. This was a typical

midweek day in our data set.

For both of the examples, the null hypothesis is not rejected, and we conclude that their data are

consistent with the assumption of an inhomogeneous Poisson process for the arrival of calls. The

respective Kolmogorov-Smirnov statistics have values K = 0.0316 (P-value ≈ 0.8 with n = 420)

and K = 0.0423 (P-value ≈ 0.9 with n = 172). These results are typical of those we have obtained

from various selections of blocks of the various types of calls involving comparable sample sizes.

Thus, overall from tests of this nature there is no evidence in this data set to reject a null hypothesis

that the arrival of calls from the VRU is an inhomogeneous Poisson process.

As an attempt to further validate the inhomogeneous Poisson character we applied this method

to the 48, 193 Regular (PS) calls in November and December in blocks of 6 minutes. With this

large amount of data one could expect to detect more than statistically negligible departures from

the null hypothesis because of rounding of times in the data (to the nearest second) and because

arrival rates are not exactly constant within 6 minute time spans. To compensate for the rounding

we “unrounded” the data before applying the test by adding independent uniform (0,1) noise to

each observation. (This unrounding did noticeably improve the fit to the ideal pattern.) After the

unrounding the resulting K-S statistic was K = 0.009. This is a very small deviation from the ideal;

nevertheless the P-value for this statistic with such a large n = 48, 963 is P ≈ 0.00007. (In order to

provide an additional bench mark to evaluate the (lack of) importance of this value we note that

this same statistic with n ≈ 22, 000 would have had P-value ≈ 0.05, which is just acceptable.)
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4 SERVICE TIME

The goal of a visit to the call center is the service itself. Table 1 summarizes the mean, SD and

median service times for the four types of service of main interest. The very few calls with service

time larger than one hour were not considered (i.e. we treat them as outliers). Including these calls

has little effect on the numbers.

Table 1: Service time by type of service, truncated at 1 hour, Nov.–Dec.

Overall Regular Service Potential Customers Internet Consulting Stock Trading

(PS) (NW) (IN) (NE)

Mean 201 179 115 401 270

SD 248 189 146 473 303

Med 124 121 73 221 175

Internet consulting calls have the longest service times, and trading services are next in duration.

Potential customers have the shortest service time (which is consistent with the nature of these

calls). An important implication is that the workload that Internet consultation imposes on the

system is more than its share in terms of percent of calls. In Brown et al. (2002b) we also verify

that the full cumulative distributions of the service times are stochastically ordered in the same

fashion as the means in Table 1.

4.1 Very short service times

Figure 2 shows histograms of the combined service times for all types of service for January through

October and for November–December. These plots resemble those for Regular Service calls alone,

since the clear majority of calls are for regular service. We see that, in the first 10 months of the

year, the percent of calls with service shorter than 10 seconds was larger than the percent at the

end of the year (7% vs. 2%).

Service times shorter than 10 seconds are questionable. And, indeed, the manager of the call

center discovered that short service times were primarily caused by agents that simply hung-up

on customers to obtain extra rest-time. (The phenomenon of agents “abandoning” customers is

not uncommon; it is often due to distorted incentive schemes, especially those that over-emphasize
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Figure 2: Distribution of service time
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short average talk-time, or equivalently, the total number of calls handled by an agent). The

problem was identified and steps were taken to correct it in October of 1999. For this reason, in the

later analysis of service times we focus on data from November and December. Suitable analyses

can be constructed for the entire year through the use of a mixture model or in a somewhat less

sophisticated manner by deleting from the service-time analysis all calls with service times under

10 seconds.

4.2 On service times and queueing theory

Most applications of queueing theory to call centers assume exponentially distributed service times

as their default. The main reason is the lack of empirical evidence to the contrary, which leads

one to favor convenience. Indeed, models with exponential service times are amenable to analysis,

especially when combined with the assumption that arrival processes are homogeneous Poisson

processes. This is the reason that M/M/N is the prevalent model used in call center practice.

In more general queueing formulae, the service time often affects performance measures through

its squared-coefficient-of-variation C2
s = σ2

s/E2(S), E(S) being the average service time, and σs its

standard deviation. For example, a common useful approximation for the average waiting time in

an M/G/N model (Markovian arrivals, Generally distributed service times, N servers), is given by:

E[Wait for M/G/N] ≈ E[Wait for M/M/N] × (1 + C2
s )

2
. (1)

See Sze (1984) and Whitt (1993); note that for large call centers this formula is only to be used with

care, as discussed in Mandelbaum and Schwartz (2002). Thus, average wait with general service

times is multiplied by a factor of (1 + C2
s )/2 relative to the wait under exponential service times.
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For example, if service times are, in fact, exponential then the factor is 1. Deterministic service

times halve the average wait of exponential. In our data the observed factor is (1 + C2
s )/2 = 1.26.

4.3 Service times are lognormal

Looking at Figure 2, we see that the distribution of service times is clearly not exponential, as

assumed by standard queueing theory. In fact, after separating the calls with very short service

times, our analysis reveals a remarkable fit to the lognormal distribution.

The left panel of Figure 3 shows the histogram of log(service time) for November and December, in

which the short service phenomenon was absent or minimal. We also superimpose the best fitted

normal density as provided by Brown and Hwang (1993). The right panel shows the lognormal

Q-Q plot of service time. This does an amazingly good imitation of a straight line. Nevertheless

the Kolmogorov-Smirnov test decisively rejects the null hypothesis of exact lognormality. (The K-S

statistic here is K = 0.020. This is quite small, but still much larger than the value of K = 0.009

that was attained for a similarly large sample size in the inhomogeneous Poisson test of Section

4.) We only provide the graphs to qualitatively support our claim of lognormality. Thus, the true

distribution is very close to lognormal but is not exactly lognormal. (The most evident deviation is

in the left tail of the histogram where both a small excess of observations is evident and the effect

of rounding to the nearest second further interferes with a perfect fit.) This is a situation where

a very large sample size yields a statistically significant result, even though there is no “practical

significance”.

Figure 3: Histogram, QQ Plot of Log(Service Time) (Nov.–Dec.)
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After excluding short service times, the strong resemblance to a lognormal distribution also holds
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for all other months. It also holds for various types of callers, even though the parameters depend

on the type of call. This means that, in this case, a mixture of log-normals is empirically log-normal,

even though mathematically this cannot exactly hold. (We refer the reader to Mandelbaum et al.

(2000) where the phenomenon is discussed in the context of the exponential distribution.) Brown

and Shen (2002) gives a more detailed analysis of service times.

Lognormality of processing times has been occasionally recognized by researchers in telecommuni-

cations and psychology. Bolotin (1994) shows empirical results which suggest that the distribution

of the logarithm of call duration is normal for individual telephone customers and a mixture of nor-

mals for “subscriber-line” groups. Ulrich and Miller (1993) and Breukelen (1995) provide theoretical

arguments for the lognormality of reaction times using models from mathematical psychology. Man-

delbaum and Schwartz (2002) use simulations to study the effect of lognormally distributed service

times on queueing delays.

4.4 Regression of log service times on time-of-day

The important implication of the excellent fit to a lognormal distribution is that we can apply

standard techniques to regress log(service time) on various covariates, such as time-of-day. For

example, to model the mean service time across time-of-day, we can first model the mean and

variance of the log(service time) across time-of-day and then transform the result back to the service-

time scale. (Shen (2002) contains a detailed analysis of service times against other covariates, such

as the identities of individual agents (servers), as well as references to other literature involving

lognormal variates.)

Let S be a lognormally distributed random variable with mean ν and variance τ2, then Y = log(S)

will be a normal random variable with some mean µ and variance σ2. It is well known that

ν = eµ+ 1

2
σ2

. This parameter (rather than µ or µ + σ2/2) is the primitive quantity that appears in

calculations of offered load, as in Section 7. In order to provide a confidence interval for ν, we need

to derive confidence intervals for µ and σ2, or more precisely, for µ + σ2/2.

For our call center data, let S be the service time of a call and T be the corresponding time-of-

day at which the call begins service. Let {Si, Ti}n
i=1 be a random sample of size n from the joint

distribution of {S, T} and sorted according to Ti. Then Yi = log(Si) will be the Log(Service Time)

of the calls, and these are (approximately) normally distributed, conditional on Ti. We can fit a
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regression model of Yi on Ti as Yi = µ(Ti) + σ(Ti)εi, where εi|Ti are i.i.d. N(0, 1).

4.4.1 Estimation of µ(·) and σ2(·)

If we assume that µ(·) has a continuous third derivative, then we can use local quadratic regression

to derive an estimate for µ(·). (See Loader (1999).) Suppose µ̂(t0) is a local quadratic estimate for

µ(t0), then an approximate 100(1 − α)% confidence interval for µ(t0) is µ̂(t0) ± zα/2seµ(t0), where

seµ(t0) is the standard error of the estimate of the mean at t0 from the local quadratic fit.

Our estimation of the variance function σ2(·) is a two-step procedure. At the first step, we regroup

the observations {Ti, Yi}n
i=1 into consecutive non-overlapping pairs {T2i−1, Y2i−1; T2i, Y2i}bn/2c

i=1 . The

variance at T2i, σ2(T2i), is estimated by a squared pseudo-residual, D2i, of the form (Y2i−1−Y2i)
2/2,

a so-called difference-based estimate. The difference-based estimator we use here is a simple one

that suffices for our purposes. In particular, our method yields suitable confidence intervals for

the estimation of σ2. More efficient estimators might slightly improve our results. There are many

other difference-based estimators in the literature. See Müller and Stadtmüller (1987), Hall, Kay

and Titterington (1990), Dette, Munk and Wagner (1998) and Levins (2002).

During the second step, we treat {T2i, D2i}bn/2c
i=1 as our observed data points and apply local

quadratic regression to obtain σ̂2(t0). Part of our justification is that, under our model, the {D2i}’s
are (conditionally) independent given the {T2i}’s. A 100(1 − α)% confidence interval for σ2(t0) is

approximately σ̂2(t0) ± zα/2seσ2(t0).

Note that we use zα/2 as the cutoff value when deriving the above confidence interval, rather than

a quantile from a Chi-squared distribution. Given our large data set the degree of freedom is large,

and a Chi-squared distribution can be approximated well by a normal distribution.

4.4.2 Estimation of ν(·)

We now use µ̂(t0) and σ̂2(t0) to estimate ν(t0), as eµ̂(t0)+σ̂2(t0)/2. Given the estimation methods

used for µ(t0) and σ2(t0), µ̂(t0) and σ̂2(t0) are asymptotically independent, which gives us

se(µ̂(t0) + σ̂2(t0)/2) ≈
√

seµ(t0)2 + seσ2(t0)2/4.

When the sample size is large, we can assume that µ̂(·) + σ̂2(·)/2 has an approximately normal
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distribution. Then the corresponding 100(1 − α)% confidence interval for ν(t0) is

exp

(

(µ̂(t0) + σ̂2(t0)/2) ± zα/2

√

seµ(t0)2 + seσ2(t0)2/4

)

.

4.4.3 Application and model diagnostics

In the following analysis, we apply the above procedure to the weekday calls of November and

December. The results for two interesting service types are shown in Figures 4(a) and 4(b), below.

There are 42, 613 Regular Service (PS) calls and 5, 066 Internet Consulting (IN) calls. To produce

the figures, we use the tricube function as the kernel and nearest-neighbor type bandwidths. The

bandwidths are automatically chosen via cross-validation.

Figure 4(a) shows the mean service time for PS calls as a function of time-of-day, with 95% con-

fidence bands. Note the prominent bimodal pattern of mean service time across the day for PS

calls. The accompanying confidence band shows that this bimodal pattern is highly significant. The

pattern resemble that for arrival rates of PS calls. (See Figure 1. This issue is discussed further in

Brown et. al. (2002b).)

Figure 4: (left) Mean Service Time (PS) versus Time-of-day (95% CI) (right) Mean Service Time

(IN) versus Time-of-day (95% CI)
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Figure 4(b) plots an analogous confidence band for IN calls. One interesting observation is that IN

calls do not show a similar bimodal pattern. We do see some fluctuations during the day, but they

are only mildly significant, given the wide confidence band. Also notice that the entire confidence

band for IN calls lies above that of PS calls. This reflects the stochastic dominance referred to in

the discussion of Table 1.

Standard diagnostics on the residuals reveal a qualitatively very satisfactory fit to lognormality,
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comparable to that in Figure 3.

5 WAITING FOR SERVICE OR ABANDONING

In Sections 3 and 4 we characterized two primitives of queueing models: the arrival process and

service times. In each case we were able to directly observe and analyze the primitive under

investigation.

We next address the last system primitive, customer patience and abandonment behavior, and the

related output of waiting time. Abandonment behavior and waiting times are deeply intertwined.

There is a distinction between the time that a customer needs to wait before reaching an agent

versus the time that a customer is willing to wait before abandoning the system. The former is

referred to as virtual waiting time, since it amounts to the time that a (virtual) customer, equipped

with infinite patience, would have waited until being served. We refer to the latter as patience.

Both measures are obviously of great importance, but neither is directly observable, and hence

both must be estimated.

A well known queueing-theoretic result is that, in heavily loaded systems (in which essentially

all customers wait and no one abandons), waiting time should be exponentially distributed. See

Kingman (1962) for an early result and Whitt (2002) for a recent text. Although our system

is not very heavily loaded, and in our system customers do abandon, we find that the observed

distribution of time spent in queue conforms very well to this theoretical prediction. See Brown et.

al. (2002b) for further details.

5.1 Survival curves for virtual waiting time and patience

Both times to abandonment and times to service are censored data. Denote by R the “patience”

or “time willing to wait”, by V the “virtual waiting time”, and equip both with steady-state

distributions. One actually samples W = min{R, V }, as well as the indicator 1{R<V } for observing

R or V . To estimate the distribution of R, one considers all calls that reached an agent as censored

observations, and vice versa for estimating the distribution of V . We make the assumption that

(as random variables) R and V are independent given the covariates relevant to the individual

customer. Under this assumption, the distributions of R and V (given the covariates) can be
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estimated using the standard Kaplan-Meier product-limit estimator.

One may plot the Kaplan-Meier estimates of the survival functions of R (time willing to wait), V

(virtual waiting time) and W = min{V, R}. Again, see Brown et. al. (2002b). There is a clear

stochastic ordering between V and R in which customers are willing to wait (R) more than they

need to wait (V ). This suggests that our customer population consists of patient customers. Here

we have implicitly, and only intuitively, defined the notion of a patient customer. (To the best of

our knowledge systematic research on this subject is lacking).

We also consider the survival functions of R for different types of service. Again, a clear stochastic

ordering emerges. For example, customers performing stock trading (type ‘NE’) are willing to wait

more than customers calling for regular services (type ‘PS’). A possible empirical explanation for

this ordering is that type NE needs the service more urgently. This suggests a practical distinction

between tolerance for waiting and loyalty/persistency.

5.2 Hazard rates

Palm (1953) was the first to describe impatience in terms of a hazard rate. He postulated that

the hazard rate of the time-willing-to-wait is proportional to a customer’s irritation due to waiting.

Aalen and Gjessing (2001) advocate dynamic interpretation of the hazard rate, but warn against

the possibility that the population hazard rate need not represent individual ones.

We have found it useful to construct nonparametric estimates of the hazard rate. It is feasible to

do so because of the large sample size of our data (about 48,000). Figure 5 shows such plots for R

and V , respectively.

The nonparametric procedure we use to calculate and plot the figures is as follows. For each interval

of length δ, the estimate of the hazard rate is calculated as

[ # of events during (t, t + δ] ]

[ # at risk at t] × δ
.

For smaller time values, t, the numbers at risk and event rates are large, and we let δ = 1 second.

For larger times, when fewer are at risk, larger δ’s are used. Specifically, the larger intervals are

constructed to have an estimated expected number of events per interval of at least four. Finally,

the hazard rate for each interval is plotted at the interval’s midpoint.

The curves superimposed on the plotted points are fitted using nonparametric regression. In
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practice we used LOCFIT (Loader, 1999), though other techniques, such as kernel procedures

or smoothing splines, would yield similar fits. The smoothing bandwidth was chosen by generalized

cross-validation. (We also smoothly transformed the x-axis, so that the observations would be

more nearly uniformly placed along that axis, before producing a fitted curve. The x-axis was then

inversely transformed to its original form.) We experimented with fitting techniques that varied

the bandwidth to take into account the increased variance and decreased density of the estimates

with increasing time. However, with our data these techniques had little effect and so are not used

here.

Figure 5(a) plots the hazard rates of the time willing to wait for regular (PS) calls. Note that it

shows two main peaks. The first occurs after only a few seconds. When customers enter the queue,

a “Please wait” message, as described in Section 2, is played for the first time. At this point some

customers who do not wish to wait probably realize they are in queue and hang up. The second

peak occurs at about t = 60, about the time the system plays the message again. Apparently, the

message increases customers’ likelihood of hanging up for a brief time thereafter, an effect that may

be contrary to the message’s intended purpose (or, maybe not!).

Figure 5: (a) Hazard rate for the time willing to wait for PS calls (Nov.–Dec.) (b) Hazard rate for

virtual waiting time (Nov.–Dec.)

Time

H
az

ar
d 

R
at

e

0 200 400 600 800

0.
0

0.
00

2
0.

00
4

0.
00

6

(a)

Time

H
az

ar
d 

R
at

e

0 200 400 600 800

0.
0

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0

(b)

In Figure 5(b), the hazard rate for the virtual waiting times is estimated for all calls. (The picture

for PS alone is very similar.) The overall plot reveals rather constant behavior and indicates a

moderate fit to an exponential distribution. (The gradual general decrease in this hazard rate

(from about .008 to .005) suggests an issue that may need further investigation.)
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5.3 Patience Index

Customer patience on the telephone is important, yet it has not been extensively studied. In the

search for a better understanding of patience, we have found a relative definition to be of use. Let

the means of V and R be mV and mR, respectively. One can define the patience index to be the

ratio mR/mV , the ratio of the mean time a customer is willing to wait to the mean time he or she

needs to wait. The justification for calling this a patience index is that, for experienced customers,

the time one needs to wait is in fact that time one expects to wait. While this patience index

makes sense intuitively, its calculation requires the application of survival analysis techniques to

call-by-call data. Such data may not be available in certain circumstances. Therefore, we wish to

find an empirical index which will work as an auxiliary measure for the patience index.

For the sake of discussion, we assume that V and R are independent and exponentially distributed.

As a consequence of these assumptions, one can demonstrate that

Patience Index
4
=

mR

mV
=

P(V < R)

P(R < V )
.

Furthermore, P(V < R)/P(R < V ) can be estimated by (# served)/(# abandoned), and we define

Empirical Index
4
=

# served

# abandoned
.

Both the numbers of served and of abandoned calls are very easy to obtain from either call-by-call

data or more aggregated call-center management reports. We have thus derived an easy-to-calculate

empirical measure from a probabilistic perspective. The same measure can also be derived using

the MLE’s for the mean of the (right-censored) exponential distribution, applied separately to R

and to V .

We can use our data to validate the empirical index as an estimate of the theoretical patience index.

Recall, however, that the Kaplan-Meier estimate of the mean is biased when the last observation is

censored or in the presence of heavy censoring. Nevertheless, a well known property of exponential

distributions is that their quantiles are just the mean multiplied by certain constants, and we use

quantiles when calculating the patience index. In fact because of heavy censoring, we sometimes do

not obtain an estimate for the median or higher quantiles. Therefore, we used 1st quartiles when

calculating the theoretical patience index.

The empirical index turns out to be a very good estimate of the theoretical patience index. For

each of 68 quarter hours between 7am and midnight, we calculated the 1st quartiles of V and R
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from the survival curve estimates. We then compared the ratio of the first quartiles to that of (#

of served) to (# of abandoned). The resulting 68 sample pairs had an R-square of 0.94. See Brown

et. al. (2002b) for a plot. This result suggests that we can use the empirical measure as an index

for human patience.

With this in mind we obtain the following empirical indices for regular weekdays in November

and December: regular customers (PS)= 5.34, stock trading (NE) = 8.71; new customers (NW)

= 1.61; internet technical support (IN) = 3.74. We thus find that stock trading customers are

the most patient, perhaps because their business is the most important to them. On the other

hand internet customers are less patient by this measure than regular customers. In this context

we emphasize that the patience index measures time willing to wait normalized by time needed to

wait. In our case (as previously noted) the internet customers are in a separate queue from that of

the regular customers. The internet customers on average are willing to wait slightly longer than

regular customers. (See Brown et. al. (2002b).) However they also need to wait longer, and overall

their patience index is less than that of regular customers.

Recall that the linear relationship between the two indices is established under the assumption

that R and V are exponentially distributed and independent. As Figure 5(a) shows, however, the

distribution for R is clearly not exponential. Similarly, Figure 5(b) shows that V also displays some

deviation from exponentiality. Furthermore, sequential samples of V are not independent of each

other. Thus, we find the linear relation to be surprisingly strong.

Finally, we note another peculiar observation: the line does not have an intercept at 0 or a slope of 1,

as suggested by the above theory. Rather, the estimated intercept and slope are -1.82 and 1.35, and

are statistically different from 0 and 1. We are working on providing a theoretical explanation that

accounts for these peculiar facts, as well as an explanation for the fact that the linear relationship

holds so well even though the assumption of exponentiality does not hold for our data. (The

assumption of independence of R and V may also be questionable.)

6 PREDICTION OF THE LOAD

This section reflects the view of the operations manager of a call center who plans and controls

daily and hourly staffing levels. Prediction of the system “load” is a key ingredient in this planning.

Statistically, this prediction is based on a combination of the observed arrival times to the system
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(as analyzed in Section 3), and service times during previous, comparable periods (as analyzed in

Section 4).

In the following discussion we describe a convenient model and a corresponding method of analysis

that can be used to generate prediction confidence bounds for the load of the system. More

specifically, we present a model in Section 6.4 for predicting the arrival rate and in Section 6.6 for

predicting mean service time. In Section 6.7 we combine the two predictions to obtain a prediction

(with confidence bounds) for the load according to the method discussed in Section 6.3.

6.1 Definition of load

In Section 3 we showed that arrivals follow an inhomogeneous Poisson process. We let Λj(t) denote

the true arrival rate of this process at time t on a day indexed by the subscript j. Figure 1 presents

a summary estimate of Λ̄·(t), the average of Λj(t) over weekdays in November and December.

For simplicity of presentation we treat together here all calls except the Internet calls (IN), since

these were served in a separate system from August to December. The arrival patterns for the

other types of calls appear to be reasonably stable from August through December. Therefore, in

this section we use August–December data to fit the arrival parameters. To avoid having to adjust

for the short-service-time phenomenon noted in Section 4.1, we use only November and December

data to fit parameters for service times. Also, we consider here only regular weekdays (Sunday

through Thursday) that were not full or partial holidays.

Together, an arbitrary arrival rate Λ(t) and mean service time ν(t) at t define the “load” at that

time, L(t) = Λ(t)ν(t). This is the expected time units of work arriving per unit of time, a primitive

quantity in building classical queueing models, such as those discussed in Section 7.

Briefly, suppose one adopts the simplest M/M/N queueing model. Then if the load is a constant,

L, over a sufficiently long period of time, the call center must be staffed, according to the model,

with at least L agents; otherwise the model predicts that the backlog of calls waiting to be served

will explode in an ever-increasing queue. Typically, a manager will need to staff the center at a

staffing level that is some function of L – for example L + c
√

L for some constant c – in order to

maintain satisfactory performance. See Borst, Mandelbaum and Reiman (2004) and Garnett et al.

(2002).
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6.2 Independence of Λ(t) and ν(t)

In Section 5.4.4 we noted a qualitative similarity in the bimodal pattern of arrival rates and mean

service times. To try to explain this similarity we tested several potential explanations, including

a causal dependence between arrival rate and service times. We were led to the conclusion that

such a causal dependence is not a statistically plausible explanation. Rather, we concluded that

the heavier volume periods involve a different mix of customers, a mix which includes a higher

population of customers that require lengthier service. The statistical evidence for this conclusion

is indirect and is reported in Brown et. al. (2002b).

Thus we proceed under the assumption that arrival rates and mean service times are conditionally

independent given the time of day.

6.3 Coefficient of Variation for the prediction of L(t)

We discuss below the derivation of approximate confidence intervals for Λ(t) and ν(t) that are based

on observations of quarter-hour groupings of the data. The load, L(t), is a product of these two

quantities. Hence, exact confidence bounds are not readily available from individual bounds for

each of Λ(t) and ν(t). As an additional complication, the distributions of the individual estimates of

these quantities are not normally distributed. Nevertheless one can derive reasonable approximate

confidence bounds from the coefficient of variation (CV) for the estimate of L.

For any non-negative random variable W with finite, positive, mean and variance, define the coef-

ficient of variation (as usual) by CV (W ) = SD(W )/E(W ).

If U and V are two independent variables and W = UV then an elementary calculation yields

CV (W ) =
√

CV 2(U) + CV 2(V ) + CV 2(U) · CV 2(V ).

In our case U and V correspond to Λ and ν. Predictions for Λ and ν are discussed in Sections 7.4

and 7.6. As noted above these predictions can be assumed to be statistically independent. Also,

their CVs are quite small (under 0.1). Note that L̂(t) = Λ̂(t)ν̂(t) and using standard asymptotic

normal theory we can approximate CV (L̂)(t) as CV (L̂)(t) ≈
√

CV 2(Λ̂)(t) + CV 2(ν̂)(t).

This leads to approximate 95% confidence intervals of the form L̂(t)±2L̂(t)CV (L̂)(t). The constant

2 is based on a standard asymptotic normal approximation as being roughly 1.96.
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6.4 Prediction of Λ(t)

Brown and Zhao (2001) investigates the possibility of modeling the parameter Λ as a deterministic

function of time of day, day of week and type of customer, and it rejects such a model. Here

we construct a random-effects model that can be used to predict Λ and to construct confidence

bands for that prediction. The model that we construct includes an autoregressive feature that

incorporates the previous day’s volume into the prediction of today’s rate.

In the model, which will be elaborated on below, we predict the arrival on a future day using arrival

data for all days up to that day. Such predictions should be valid for future weekdays on which the

arrival behavior follows the same pattern as those for that period of data.

Our method of accounting for dependence on time and day is more conveniently implemented with

balanced data, although it can also be used with unbalanced data. For convenience we have thus

used arrival data from only regular (non-holiday) weekdays in August through December on which

there were no quarter-hour periods missing and no obvious gross outliers in observed quarter-hourly

arrival rates. This leaves 101 days. For each day (indexed by j = 1, . . . , 101) the number of arrivals

in each quarter hour from 7am through 12 midnight was recorded as Njk, k = 1, . . . , 68. As noted

in Section 3, these are assumed to be Poisson with parameter Λ = Λjk.

One could build a fundamental model for the values of Λ according to a model of the form

Njk = Poiss(Λjk), Λjk = Rjτk + ε′jk, (2)

where the τk are fixed deterministic quarter-hourly effects, the Rj denote random daily effects

with a suitable stochastic character, and the ε′jk are random errors. Note that this multiplicative

structure is natural, in that the τk’s play the role of the expected proportion of the day’s calls that

fall in the k-th interval. This is assumed to not depend on the Rj ’s, the expected overall number

of calls per day. (We accordingly impose the side condition that
∑

τk = 1.)

We will, instead, proceed in a slightly different fashion that is nearly equivalent to (2), but is

computationally more convenient and leads to a conceptually more familiar structure. The basis

for our method is a version of the usual variance stabilizing transformation. If X is a Poiss(λ)

variable then V =
√

X + 1
4 has approximately a mean θ =

√
λ and variance σ2 = 1

4 . This is

nearly precise even for rather small values of λ. (One could instead use the simpler form
√

X or

the version of Anscombe (1948) that has
√

X + 3
8 , in place of

√

X + 1
4 ; only numerically small
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changes would result. Our choice is based on considerations in Brown et al. (2001).) Additionally,

V is asymptotically normal (as λ → ∞), and it makes sense to treat it as such in the models that

follow. We thus let Vjk =
√

Njk + 1
4 , and assume the model

Vjk = θjk + ε∗jk with ε∗jk
iid∼ N

(

0, 1
4

)

,

θjk = αjβk + εjk,

αj = µ + γVj−1,+ + Aj ,

(3)

where Aj ∼ N(0, σ2
A), εjk ∼ N(0, σ2

ε), Vj,+ =
∑

k

Vjk, and Aj and εjk are independent of each

other and of values of Vj′,k for j′ < j. Note that αj is a random effect in this model. Furthermore

the model supposes a type of first order auto-regressive structure on the random daily effects. The

correspondence between (2) and (3) implies that this structure is consistent with an approximate

assumption that

Rj =

(

γ
∑

k

√

Nj−1,k +
1

4
+ Aj

)2

.

The model is thus not quite a natural one in terms of Rj , but it appears more natural in terms of

the Vjk in (3) and is computationally convenient.

The parameters γ and βk need to be estimated, as well as µ, σ2
A and σ2

ε . We impose the side

condition
∑

β2
k = 1, which corresponds to the condition

∑

τk = 1. The goal is then to derive

confidence bounds for θjk =
√

Λjk in (3), and squaring the bounds yields corresponding bounds

for Λjk.

The parameters in the model (3) can easily be estimated by a combination of least-squares and

method-of-moments. Begin by treating the {αj}’s as if they were fixed effects and using least-

squares to fit the model

Vjk = αjβk +
(

εjk + ε∗jk
)

.

This is an easily solved nonlinear least squares problem. It yields estimates α̂j , β̂k and σ̂2, where

the latter estimate is the mean square error from this fit. σ2
ε can then be estimated by method-of-

moments as

σ̂2
ε = σ̂2 − 1

4
.

Then use the estimates {α̂j} to construct the least squares estimates of these parameters that would

be appropriate for a linear model of the form

α̂j = µ + γVj−1,+ + Aj . (4)
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This yields least-squares estimates, µ̂ and γ̂, and the standard mean square error estimator σ̂2
A for

the variance of Aj .

The estimates calculated from our data for the quantities related to the random effects are

µ̂ = 97.88, γ̂ = 0.6784 (with corresponding R2 = 0.501),

σ̂2
A = 408.3, σ̂2

ε = 0.1078 (since σ̂2 = 0.3578).
(5)

The value of R2 reported here is derived from the estimation of γ in (3) and it measures the reduction

in sum of squared error due to fitting the {α̂j} by this model, which captures the previous day’s call

volumes, Vj−1,+. The large value of R2 makes it clear that the introduction of the auto-regressive

model noticeably reduces the prediction error (by about 50%) relative to that obtainable from a

model with no such component (i.e., one in which a model of the form (3) holds with γ = 0).

For a prediction,
^

Λk, of tomorrow’s value of Λk at a particular quarter hour (indexed by k), one

would use the above estimates along with today’s value of V+. From (3) it follows that tomorrow’s

prediction is
^

θk = β̂k (γ̂V+ + µ̂) (6)

as an estimate of

θk = βk (γV+ + µ + A) + ε (7)

where A ∼ N(0, σ2
A) and ε ∼ N(0, σ2

ε) are independent. The variance of the term in parentheses in

(7) is the prediction variance of the regression in (6). Denote this by PredVar(V+). The coefficient

of variation of β̂k turns out to be numerically negligible compared to other coefficients of variation

involved in (6) and (7). Hence

Var(
^

θk) ≈ β̂2
k × PredVar(V+) + σ̂2

ε . (8)

These variances can be used to yield confidence intervals for the predictions of θk. The bounds

of these confidence intervals can then be squared to yield confidence bounds for the prediction of

Λk. Alternatively one may use the convenient formula CV (
^

θ
2

k) ≈ 2 × CV (
^

θk), and produce the

corresponding confidence intervals. See Brown et. al. (2002b) for such a plot.

We note that the values of CV (
^

θ
2

k) here are in the range of 0.25 (for early morning and late

evening) down to 0.16 (for mid-day). Note also that both parts of (8) are important in determining

variability – the values of Var(
^

θk) range from 0.14 (for early morning and late evening) up to 0.27
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(for mid-day). The fixed part of this is σ̂2
ε = 0.11, and the remainder results from the first part of

(8), which reflects the variability in the estimate of the daily volume figure, A, in (3).

Correspondingly, better estimates of daily volume (perhaps based on covariates outside our data

set) would considerably decrease the CVs during mid-day but would not have much effect on those

for early morning and late evening. (Incidentally, we tried including day of the week – Sunday,

Monday, etc. – as an additional covariate in the model (3), but with the present data this did not

noticeably improve the resulting CVs.)

A natural suggestion would be to use a nonparametric model for the curve Λ(t) in place of the

binned model in (2), (3). This suggestion is appealing, and we plan to investigate it. However we

have not so far succeeded in producing a nonparametric regression analysis that incorporates all

the features of the above model and also provides theoretically unbiased prediction intervals.

The preceding model includes several assumptions of normality. These can be empirically checked

in the usual way by examining residual plots and Q-Q plots of residuals. All the relevant diagnostic

checks showed good fit to the model. For example, the Q-Q plots related to A and ε support the

normality assumptions in the model. According to the model the residuals corresponding to εjk

should also be normally distributed. The Q-Q plot for these residuals has slightly heavier-than-

normal tails; but only 5 (out of 6,868) values seem to be heavily extreme. These heavy extremes

correspond to quarter-hour periods on different days that are noticeably extreme in terms of their

total number of arrivals.

6.5 Prediction of ν(t)

In this section we also model the service time according to quarter hour intervals. This allows us

to combine (in Section 6.6) the estimates of ν(t) derived here with the estimates of Λ(t) derived in

Section 6.4, and to obtain rigorously justifiable, bias-free prediction confidence intervals. In other

respects the model developed in this section resembles the nonparametric model of Section 4.4.

We use weekday data from only November and December. The lognormality discussed in Section

4.3 allows us to model log(service times), rather than service times. Let Yjkl denote the log(service

time) of the l-th call served by an agent on day j, j = 1, . . . , 44, in quarter-hour interval k,

k = 1, . . . , 68. In total there are n = 57, 152 such calls. (We deleted the few call records showing

service times of 0 or of > 3600 seconds.) For purposes of prediction we will ultimately adopt a
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model similar to that of Section 4.4, namely

Yjkl = µ + κk + εjkl, εjkl ∼ N(0, σ2
k) (indep.). (9)

Before adopting such a model we investigate whether there are day-to-day inhomogeneities that

might improve the prediction model. This was done by adding a random day effect to the model in

(9). The larger model had a partial R2 = 0.005. This is statistically significant (P-value < 0.0001)

due to the large sample size, but it has very little numerical importance. We also investigated a

model that used the day – Sunday, Monday, etc. – as an additional factor but found no useful

information in doing so. Hence in what follows we use model (9).

The goal is to produce a set of confidence intervals (or corresponding CVs) for the parameter

νk = exp

(

µ + κk +
σ2

k

2

)

. (10)

The basis for this is contained in Section 4.4, except that here we use estimates from within each

quarter-hour time period, rather than kernel smoothed estimates. This enables us to get rigorously

justifiable, bias-free prediction confidence intervals. The most noticeable difference is that the

standard error of σ2
k is now estimated by

seσ2
k
≈

√

2

nk − 1
S2

k , (11)

where nk denotes the number of observations within the quarter hour indexed by k and S2
k denotes

the corresponding sample variance from the data within this quarter hour. This estimate is moti-

vated by the fact that if X ∼ N(µ, σ2) then Var((X − µ)2) = 2σ4. See Brown et. al. (2002b) for a

plot of these prediction intervals.

Coefficients of Variation for these estimates can be calculated from the approximate (Taylor series)

formula CV ∗(ν̂k) ≈ CV
(

µ̂ + κ̂k +
σ̂2

k

2

)

. (The intervals ν̂k±1.96× ν̂k×CV ∗ agree with the above to

within 1 part in 200, or better.) The values of CV here range from 0.03 to 0.08. This is much smaller

than the corresponding values of CVs for estimating Λ(t). Consequently in producing confidence

intervals for the load, L(t), the dominant uncertainty is that involving estimation of Λ(t).

6.6 Confidence intervals for L(t)

The confidence intervals can be combined as described in Section 6.3 to obtain confidence intervals

for L in each quarter hour period. Care must be taken to first convert the estimates of Λ and ν
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to suitable, matching units. Figure 6 shows the resulting plot of predicted load on a day following

one in which the arrival volume had V+ = 340.

Figure 6: 95% prediction intervals for the load, L, following a day with V+ = 340.

The intervals in Figure 6 are still quite wide. This reflects the difficulty in predicting the load at

a relatively small center such as ours. We might expect that predictions from a large call-center

would have much smaller CVs, and we are currently examining data from such a large center to see

whether this is the case. Of course, inclusion (in the data and corresponding analysis) of additional

informative covariates for the arrivals might improve the CV’s in a plot such as Figure 6.

7 SOME APPLICATIONS OF QUEUEING SCIENCE

Queueing theory concerns the development of formal, mathematical models of congestion in stochas-

tic systems, such as telephone and computer networks. It is a highly-developed discipline that has

roots in the work of A. K. Erlang (Erlang 1911, 1917) at the beginning of the 20th century. Queue-

ing science, as we view it, is the theory’s empirical complement: it seeks to validate and calibrate

queueing-theoretic models via data-based scientific analysis. In contrast to queueing theory, how-

ever, queueing science is only starting to be developed. While there exist scattered applications

in which the assumptions of underlying queueing models have been checked, we are not aware of

previous systematic effort to validate queueing-theoretic results.

One area in which extensive work has been done – and has motivated the development of new

theory – involves the arrival processes of internet messages (or message packets). See for example,

Willinger, Taqqu, Leland and Wilson (1995), Cappe, Moulines, Pesquet, Petropulu and Yang (2002)

and the references therein. These arrivals have been found to involve heavy tailed distributions

and/or long range dependencies (and thus differ qualitatively from the results reported in our
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Section 3).

In this section, we use our call-center data to produce two examples of Queueing Science. In Section

7.1 we validate (and refute) some classical theoretical results. In Section 7.2, we demonstrate

the robustness (and usefulness) of a relatively simple theoretical model, namely the M/M/N+M

(Erlang-A) model, for performance analysis of a complicated reality, namely our call center.

7.1 Validating Classical Queueing Theory

We analyze two congestion laws: first, the relationship between patience and waiting, which is

a byproduct of Little’s law (Zohar, Mandelbaum and Shimkin (2002), Mandelbaum and Zel-

tyn(2003)); then, the interdependence between service quality and efficiency, as it is manifested

through the classical Khintchine-Pollaczek formula. (See, for example, Equation (5.68) in Hall

(1991).)

On Patience and Waiting: We consider the relationship between average waiting time and the

fraction of customers that abandon the queue. To do so, we compute the two performance measures

for each of the 3,867 hourly intervals that constitute the year. Regression then shows that a strong

linear relationship exists between the two, with a value of R2 = 0.875.

Indeed, if W is the waiting time and R is the time a customer is willing to wait (referred to as

patience), the law

% Abandonment =
E(W )

E(R)
(12)

is provable for models with exponential patience as in Baccelli and Hebuterne (1981) or Zohar et

al. (2002). However, exponentiality is not the case here. (See Figure 5.)

Thus, the need arises for a theoretical explanation of why this linear relationship holds in models

with generally distributed patience. Similarly, the identification and analysis of situations in which

non-linear relationships arise remains an important research question (Motivated by the present

study, Mandelbaum and Zeltyn (2003) pursues both directions.)

Under the hypothesis of exponentiality, we use (12) to estimate the average time that a customer is

willing to wait in queue, an absolute measure of customer patience. (Compare this to the relative

index defined in Section 5.3.) From the inverse of the regression-line slope, we find that the average

patience is 446 seconds in our case.
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On Efficiency and Service Levels: As fewer agents cope with a given workload, operational

efficiency increases. The latter is typically measured by the system (or agents’) “occupancy,” the

average utilization of agents over time. Formally, it is defined as

ρ =
λeff

Nµ
, (13)

where λeff is the effective arrival rate (namely the arrival rate of customers who get served), µ

is the service rate (E(S) = 1/µ is the average service time), and N is number of active agents,

either serving customers or available to do so. Thus, the staffing level N is required to calculate

agents’ occupancy. Neither occupancies nor staffing levels are explicit in our database, however, so

we derive indirect measures of these from the available data. See Brown et. al. (2002b) for details.

The three plots of Figure 7 depict the relationship between average waiting time and agents’

occupancy. The first plot shows the result for each of the 3,867 hourly intervals over the year. In

the second and third, the patterns are emphasized by aggregating the data. (The hourly intervals

were ordered according to their occupancy and adjacent groups of 45 were then averaged together.)

Figure 7: Agents’ occupancy vs. average waiting time
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The classical Khintchine-Pollaczek formula suggests the approximation

E(W ) ≈ 1

N

ρ

1 − ρ

1 + C2
s

2
E(S), (14)

which is a further approximation of (1). See, for example Whitt (1993). Here Cs denotes the

coefficient of variation of the service time and ρ denotes the agents’ occupancy.

The third plot of Figure 7 tests the applicability of the Khintchine-Pollaczek formula in our setting

by plotting N ·E(W )/E(S) versus ρ/(1− ρ). To check if the two exhibit the linear pattern implied
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by (14), we display an aggregated version of the data as a scatter plot on a logarithmic scale. The

graph pattern is not linear. This can be explained by the fact that classical versions of Khintchine-

Pollaczek formula are not appropriate for queueing systems with abandonment.

Note that queueing systems with abandonment usually give rise to dependence between successive

interarrival times of served customers, as well as between interarrival times of served customers

and service times. For example, long service times could engender massive abandonment and,

therefore, long interarrival times of served customers. A version of the Khintchine-Pollaczek formula

that can potentially accommodate such dependence is derived in Fendick, Saksena and Whitt

(1989). Theoretical research is needed to support the fit of these latter results to our setting with

abandonment, however.

7.2 Fitting the M/M/N+M model (Erlang-A)

The M/M/N model (Erlang-C), by far the most common theoretical tool used in the practice of

call centers, does not allow for customer abandonment. The M/M/N+M model (Palm (1943)) is

the simplest abandonment-sensitive refinement of the M/M/N system. Exponentially distributed,

or Markovian, customer patience (time to abandonment) is added to the model, hence the ‘+M’

notation. This requires an estimate of the average duration of customer patience, 1/θ, or equiv-

alently an individual abandonment rate θ. Because it captures Abandonment behavior, we call

M/M/N+M the “Erlang-A” model. See Garnett et al. (2002) for further details. The 4CallCenters

software (4CallCenters, 2002) provides a valuable tool for implementing Erlang A calculations.

The analysis in Sections 4 and 5 shows that, in our call center, both service times and patience are

not exponentially distributed. Nevertheless, simple models have often been found to be reasonably

robust in describing complex systems. We therefore check whether the M/M/N+M model provides

a useful description of our data.

7.2.1 Use of the Erlang-A Model

Erlang-A Analysis – Overall Assessment. We now validate the Erlang-A model against the

overall hourly data used in Section 7.1. Three performance measures are considered: probability of

abandonment, average waiting time and probability of waiting (at all). Their values are calculated

for our 3,867 hourly intervals using exact Erlang-A formulae. Then the results are aggregated along
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the same method employed in Figures 7. The resulting 86 points are compared against the line

y = x.

As before, the parameters λ and µ are easily computed for every hourly interval. For the overall

assessment, we calculate each hour’s average number of agents N . Because the resulting N ’s need

not be integral, we apply a continuous extrapolation of the Erlang-A formulae, obtained from

relationships developed in Palm (1943).

For θ, we use formula (12), valid for exponential patience, in order to compute 17 hourly estimates

of 1/θ = E(R), one for each of the 17 one-hour intervals 7am-8am, 8am-9am,. . . , 11pm-12pm. The

values for E(R) ranged from 5.1 min (8am-9am) to 8.6 min (11pm-12pm). We judged this to be

better than estimating θ individually for each of the 3,867 hours (which would be very unreliable)

or, at the other extreme, using a single value for all intervals (which would ignore possible variations

in customers’ patience over the time of day, see Zohar et al. (2002)).

The results are displayed in Figure 8. The figure’s two left-hand graphs exhibit a relatively small

yet consistent overestimation with respect to empirical values, for moderately and highly loaded

hours. (We plan to explore the reasons for this overestimation in future research.) The right-

hand graph shows a very good fit everywhere, except for very lightly and very heavily loaded

hours. The underestimation for small values of P{Wait} can probably be attributed to violations

of work conservation (idle agents do not always answer a call immediately). Summarizing, it

seems that these Erlang-A estimates can be used as useful upper bounds for the main performance

characteristics of our call center.

Figure 8: Erlang-A formulas vs. data averages
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7.2.2 Approximations

Garnett et al. (2002) develops approximations of various performance measures for the Erlang-

A (M/M/N+M) model. Such approximations require significantly less computational effort than

exact Erlang-A formulae. The theoretical validity of the approximation is established in Garnett

et al. (2002) for large Erlang-A systems. While this is not exactly our case, plots we have created

nevertheless demonstrate a good fit between data averages and the approximations.

In fact, the fits for the probability of abandonment and average waiting time are somewhat superior

to those in Figure 8 (the approximations provide somewhat larger values than the exact formulae).

This phenomenon suggests two interrelated research questions of interest: how to explain the over-

estimation in Figure 8, and how to better understand the relationship between Erlang-A formulae

and their approximations.

The empirical fit of the simple Erlang-A model and its approximation turn out to be very (perhaps

surprisingly) accurate. Thus, for our call center—and those like it—use of the Erlang A for capacity-

planning purposes could and should improve operational performance. Indeed, the model is already

beyond typical current practice (which is Erlang-C dominated), and one aim in the current paper

is to help change this state of affairs.
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